Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dis Aquat Organ ; 158: 27-36, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661135

RESUMEN

Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Enfermedades de los Peces , Serogrupo , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Ghana/epidemiología , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/epidemiología , Virulencia , Antibacterianos/farmacología , Lagos/microbiología , Cíclidos , Acuicultura
2.
Nat Microbiol ; 8(12): 2365-2377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996707

RESUMEN

Malaria results in over 600,000 deaths annually, with the highest burden of deaths in young children living in sub-Saharan Africa. Molecular surveillance can provide important information for malaria control policies, including detection of antimalarial drug resistance. However, genome sequencing capacity in malaria-endemic countries is limited. We designed and implemented an end-to-end workflow to detect Plasmodium falciparum antimalarial resistance markers and diversity in the vaccine target circumsporozoite protein (csp) using nanopore sequencing in Ghana. We analysed 196 clinical samples and showed that our method is rapid, robust, accurate and straightforward to implement. Importantly, our method could be applied to dried blood spot samples, which are readily collected in endemic settings. We report that P. falciparum parasites in Ghana are mostly susceptible to chloroquine, with persistent sulfadoxine-pyrimethamine resistance and no evidence of artemisinin resistance. Multiple single nucleotide polymorphisms were identified in csp, but their significance is uncertain. Our study demonstrates the feasibility of nanopore sequencing for malaria genomic surveillance in endemic countries.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Secuenciación de Nanoporos , Niño , Humanos , Preescolar , Plasmodium falciparum/genética , Ghana/epidemiología , Antimaláricos/farmacología , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Resistencia a Medicamentos/genética
3.
Nat Commun ; 13(1): 2494, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523782

RESUMEN

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genoma Viral/genética , Ghana/epidemiología , Humanos , Mutación , Pandemias , Filogenia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA